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Many-body perturbation theory is applied to compute thesgpaaticle electronic structures and the optical-
absorption spectra (including excitonic effects) for saldransparent conducting oxides. We discuss
HSE+GoWp results for band structures, fundamental band gaps, aadtie electron masses of MgO, ZnO,
CdO, SnQ, SnO, Inp03, and SiQ. The Bethe-Salpeter equation is solved to account for@xiciteffects in the
calculation of the frequency-dependent absorption caeffis. We show that the HSEBp\W approach and the
solution of the Bethe-Salpeter equation are very welleslib describe the electronic structure and the optical
properties of various transparent conducting oxides irdgamgreement with experiment.

8 PACS numbers: 71.15.Qe, 71.20.Ps, 71.35.Cc, 78.20.B#).F&a

9 Keywords: ab initio electronic structure methods, BetladpSter equation, excitons, fundamental gaps, effectiasses,

10 optical absorption

1 I. INTRODUCTION s the fundamental gaps or the effective electron masses bave t

0 be thoroughly described. Also the optical-absorption prop

«»  Transparent conducting oxides (TCOs) combine high tramserties near the band-edge and their dependence on the light
s parency in the visible spectral range with high electricai-c = polarization (due to dipole selection rules) r_1eed to be unde_
«« ductivity under ambient conditions? Post-transition-metal= Stood. For the TCOs a plethora of experimental results is
s compounds such as ZnO ., and SnQ are typical TCOs * f':wallabl_e?’m2 however, their interpretation can be challeng-
s as they have large fundamental band gaps rendering thesern{ag; for instance, due to sample-quality issues that depend

«» terials transparent into the ultraviolet (UV) spectral gan = the manufacturing technique, the substrate temperature du
s Due to their very large gaps, especially MgO and Side * ind growth, or the post-deposmon.treatmé?ltn the case of_

1 transparent into the far UV. The gaps can be modified, esg/N203, growth can be phase selective and lead to both cubic as
» by alloying ZnO with MgO or CdO (see Ref. 3 and refer well as rhombohedratli) polymorphs with band gaps differ-

2 ences therein), but also by varying their chemistry, for i-ing by as much as 0.7 e¥.In the case of ZnO (see Ref. 35

» stance when going from SpCio SnO* Free carriers, in-® and referencesthereln), but also forSr(éEe Refs. 36—-38 the_
»» troduced by intentional as well as unintentional doping, ar details of the valence-band ordering and the band symreetrie
-« the reason for their remarkable conductiviffe@rominent ex- = aré not unequivocally determined from experiment.

s amples are aluminum-doped Zif@in-doped indium oxidé, s Due to the continuous development of sophisticated meth-
2 antimony-doped Sn£?° or even zinc-indium-tin oxidé? « 0ds and algorithms as well as the increasing power of today’s
»  Bulk TCO materials attract great attention due to their ost-Supercomputers, the theoretical description of such rater
standing opticat, electrical**~**and electrochemicHl prop- e properties has made substantial progress during the last.ye
erties combined with excellent hardness and environmentdihe accurate parameter-free description of the quasiferti
stability} This renders them highly interesting for applicas (QP) electronic structures and the frequency-dependent di
tions as transparent front contacts for solar celfs!>16as « electric functions of complex materials (see the reviews in
next-generation gate oxides for Si-based electrotlimd ~ Refs. 39-42 and references therein) has become possible and
in electrodes for photocatalytic water splittifSurfaces of = leads — hand in hand with modern experimental techniques —
the TCOs are highly interesting since for these an electroito a deep understanding. Many-body perturbation theory is
accumulatioh® 2! as well as its depletidd have been ob-7 used to take the excitation aspect of important experinhenta
served. Exploring the atomic structure and the terminatforvs techniques into account and can be applied to compute the
surfaces of such oxides is still subject of currentrese&tcl? = electronic and spectral properties of bulk oxides in a given
In addition, the properties of the TCOs are drastically moslideal crystal structufé=4€ but also for alloys’* oxide sys-

ified when they are prepared as nanob&tsanotubeg’ = tems with defecté®#°andn-type TCOs20->2

nanoribbong® nanowires’? and nanoparticle¥ s InSec.ll of the present paper we summarize the theoretical
a  Even though the TCOs are highly interesting for these reaand computational approaches that we used to compute QP
» sSons, their most desirable widespread application in semico. band structures and the optical absorption of various oxide
a3 ductor electronics, for instance as (light-emitting) diedis « materials. We present the corresponding band structues an
« currently hampered by the lack of stable and reprodugibles: provide detailed information about band gaps and effective
» type TCOs. For other photovoltaic or optoelectronic dev@ess masses in Sedll . The line-shape and the oscillator strength of
« deep understanding of intrinsic key properties is necgshar s the optical absorption edges are discussed in ISeSection

« this context, especially the electronic band structuresiadl  V summarizes this review paper.
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material ground state excited state 17 0.15 a.u1, as suggested by Paiet al,5*%° reasonably ful-
MgO, ZnO, CdO Refs. 45 and 55 Refs. 43 and 45 == fills this requirement for several oxidé%:4%:66.67n this work
SnG, Ref. 44 Ref. 44 120 We review results for different TCOs that rely on the HSE
SnO Refs. 24 and 56 Refs. 24 and 56 13 functional to obtain the starting electronic structurestfe
In203 Ref. 57 Ref. 57 131 GoWp calculations; the entire approach is called H&GWy
MgxZn O, CdkzZm xO|  Refs.45and 47 Refs. 3and 45 ,;, in the following. To keep the computational effort reasdeab
SIC, Ref. 58 Refs. 58 and 59, and since spin-orbit induced shifts are smaller than the QP

134 corrections, we assume that the influence of the spin-orbit
TABLE I. For each material the references are given thataiontss interaction on the QP corrections is negligible. Therefore
more information on the calculations of the ground-statd #re ,,; we take the spin-orbit interaction into accotfhonly when
excited-state properties that are reviewed in this work. w calculating the HSE electronic structure and then apply the

s QP corrections calculated for spin-paired electf®n&®

130 Overall, we expect the QP energies calculated by the scheme
Il. THEORETICAL AND COMPUTATIONAL APPROACH ,; outline above to be converged within about @V.

w A shortcoming of the HSEG W approach is its large com-

The present review paper focuses on the description.gbutational cost. This becomes particularly problematictie

excited-state properties, such as the quasiparticle (@e) es calculation of optical spectra, i.e., when significantlyrelo-
tronic structure and the optical absorption spectrum, ifferd ..« points have to be taken into account for converging, for in-
ent oxides by means of ab-initio framework. Their ground-ss stance, the macroscopic dielectric function around thergbs
state properties and, in particular, determining the dntuils tion edge. In these cases we pursue a different approach by
rium atomic geometries, e.g. within density-function&dthy .~ approximating the results of the HS&3Wp calculations via
(DFT),%%5* are not part of the present work. For more infar- a DFT4U+A method®41:43-4568yhere the term “DFT” indi-
mation about that as well as about all computational detailgates that either the local-density approximation (in thgec
we want to point the reader to Talllevhich indicates the ref1ss of SnQ, and SnO) or the generalized-gradient approximation
erence(s) in which the respective calculations are predant.s: (for MgO, ZnO, and CdO) is used. Therelh, which denotes
more detail. 152 the additional Coulomb interaction term within the DRI+
15» approach®’tis adjusted such that the energy position of the
1« d bands matches the HSBEy\Wp result. In addition A de-

L

©

A. Quasiparticle electronic structures 155 Scribes a scissors operatbthat rigidly shifts all conduction
156 bands so that the fundamental gap becomes identical to the
Important experimental techniques such as (inverse) phB’t(hSE“tGOWO value.

electron spectroscopy or X-ray absorption and emissiah st The HSE&0W as well as the DFTY+A calculations are

ies probe excited-state properties of a material, sincengui® caTed out using the Vienna Ab-Initio Simulation Package
these processes an electron is added to or removed frontQ SP)- The wave fl_mCt.'()nS are expa”ded_ Into plane
system. Hence, the ground-state description provided B yaves and the electron-ion |nterac7t|on is described via the
Kohn-Sham (KS) scheme within DFT is not sufficient, it projector-augmented wave meth&i.
stead, QP effects have to be taken into acc8¥(lis-) inter-
preting the KS eigenvalugbas excitation energies, typically
leads to too small band gaps and wrong band disperS§forss, B. Optical absorption
since the KS eigenvalues neglect the excitation aspectghat
characteristic for the experimental techniques that age s ..« In optical-absorption experiments excitation energies ar
measure these quantities. 165 Studied that are not high enough to remove electrons from
Electronic excitations can accurately be treated by ctiyregs the system. Instead, upon the irradiation with light, arcele
describing the electronic self energly Expressing> as the i« tron that gets excited from the valence bands into the conduc
product of the Green’s function of the electroBsand the i tion bands, leaves behind a hole in the valence bands. Due
screened Coulomb potentid, as it was introduced by Liss to their opposite charge, the photo-created hole and the ex-
Hedin in 19655362 is an essential simplification of the den cited electron interact via the screened Coulomb attractio
scription by neglecting vertex corrections. Neverthel#ss 1. leading to the formation of excitons in the material. Excito
fully self-consistent solution of the resulting QP equatis . effects due to the electron-hole interaction can, for imsta
very demanding from a computational point of view. For thatbe taken into account in thab-initio description by solving
reason itis common to rely on perturbation theory to comput@ Bethe-Salpeter equation (BSE) for the optical polamzati
QP energies in practice: In th@Wp scheme first-order QR function/87°
corrections are calculated for the eigenvalues of somé-star For its numerical solution the BSE is typically rewrit-
ing electronic structure. Itis immediately clear that amji&l .- ten into an eigenvalue problem for the electron-hole
electronic structure must not be too far from the final resuit pair Hamiltonian’® We use the KS eigenstates from the
for first-order perturbation theory to be sufficient. e DFTHUJ+A calculation to compute the matrix elements of the
We found that the range-separated HSEO06 hyhgidstatically screened Coulomb attraction of the electronithe
functional® but with a range-separation parameter :afholes as well as of the unscreened exchange-like term that ac
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counts for local-field effect$:80 The DFT#J+A KS eigen-
values are used to describe the transition energies of non-
interacting electrons and holes. The corresponding dptica
transition-matrix elements are computed using the lonigitu
nal approximatiorf! After constructing the excitonic Hamil-
tonian, its eigenstates and eigenvalues can be used tdatalcu
the optical properties of the systéiré4

The converged calculation of the optical absorption spec-
trum in the vicinity of the band edge requires a large num-
ber ofk points#38°Since for some of the materials discussed
in this work the lowest optical transitions are confined te th
vicinity of the I point, this part of the Brillouin zone (BZ)
can be sampled more densely to obtain convergence for the
absorption edg€® we employ hybridk-point meshée® to
achieve that goal. However, the computational cost of diag-
onalizing the resulting excitonic Hamiltonian matricesttwi
ranksN of up to~ 100,000 is much too high. Therefore, in
this work an efficient time-evolution schefifés employed
to calculate the dielectric functioa(w) from the excitonic
Hamiltonian.

When very dens&-point meshes are used, the large com-
putational cost prohibits taking enough conduction bants i
account for including high-energy optical transitions. isTh
however, becomes necessary to obtain converged results fo
the real part ofe(w) at low photon energies due to the
Kramers-Kronig relatioff between the real and imaginary
parts. Therefore, as described in detail in Refs. 43 and 45,
we also solve a BSE using a more coaksgoint mesh to in-
clude optical transitions at intermediate energies. Iritaud
the optical transitions lying above this BSE cutoff are urdgd
(up to 200 eV) on the KS level. Finally, the absorption coeffi-
cienta (w) is calculated from the resulting dielectric function.
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I11. QUASIPARTICLE ELECTRONIC STRUCTURES
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The QP band structures calculated using the HSd%
approach are depicted for MgO, ZnO, CdO, $nGnO,
In,03, and SiQ in Fig. 1. For the oxides studied in this work
the uppermost valence bands are derived fronpGtates and
the lowest conduction-band states originate frostates of
the respective metal catiéf.

In addition, from Figl it is obvious that MgO, ZnO, SnQ i
In,O3, and SiQ are direct semiconductors with the funda- X 7 K T T W
mental band gap at tHe point; the two monoxides CdO and
SnO are found to be indirect semiconductors. While in CdoFIG. 1. Quasiparticle band structures in the vicinity of fbada-

the conduction-band minimum occurs at figoint and the  mental gap of (a) MgO, (b) ZnO, (c) CdO, (d) Snde) Sno, (f)
maximum of the valence bands occurs away fionthe sit-  |n,0;, and (g) SiQ calculated using the HSE\W approach. The
uation is different for SnO. In this material the valenceuba valence-band maximum has been set to zero energy.

maximum is located at and the conduction band shows a

pronounced minimum at thd point of the BZ, whereak is

anMj saddle point for the lowest conduction band (cf. Rig. - ied in this work, with the exception of rocksaltsf CdO and

The direct and the indirect QP band gaps of these oxidessalitharge- (t) SnO, have fundamental band gaps that are large

compiled in Tabldl. These results for the electronic structurgsenough for visible light not to be absorbed by the intrinsa:m

have been carefully compared to experimental 4&ta8%-°1 ., terials. Even though the direct gaps at Fhpoint are as large

(see also Tablé for the corresponding references) and theas 1.81 eV is-CdO) or even 3.21 eVI{-SnO) the indirect

agreement is found to be rather good. 22 gaps of these two materials are much smaller. Hence, phonon-
From Tablell it also becomes clear that all the oxides stud-assisted optical absorption can occur in the visible spkectr
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Edir(r) gindir pabsL gabs| My same order of magnitude in all three high-symmetry direc-
g g g 9 tions and are, roughly, one order of magnitude larger than th
rs-MgO 7.49 - 6.95 6.95| 038 7 » rougntly, 9 g

WZZnO 321 _ 296 3.00 0.30 ¢ Values for the light-hole band. Also the lowest CB turns out
rs-CdO 1.81 0.68 1.73 1.73 0.21 2 to be almost isotropic. As withs-MgO, the two uppermost
t-Sno 3.65 _ 4.13 4.75 0.23 20 Valence bands ins-CdO are heavy-hole bands and the third
[t-SnO 3.21 0.16 1.79 2.29 0.42 -n oneis of light-hole typé® Since forrs-CdO the valence-band
rh-In O3 3.25 - - - 0.22 »» maximum occurs away from tHepoint in the BZ, the values
B-Si0; 8.76 - - - 0.57 7 for the effective mass of the uppermost two valence bands are

27:

N

negative along certain directionskrspace (cf. Tabldl). This
TABLE II. Direct [EJ"(I")] and indirect EI") QP band gaps as™ has been traced back to the fact thephiehybridization is for-
s bidden af” due to thas lattice symmetry*>°%In this material
abs| 7 holes are expected to occur at the valence-band maximum be-
(Eg ") light polarization are given in V. Harmonic mean values ‘ZO tweenK andl". We observe that the effective electron masses
the effective electron masseg, derived from the HSE&yW band Qi ; i ;
structure (HSE band structure fon®3®7), are given in units of the” rf-rS[ri g |82t ?I_r]ee,\\/ller}(;iﬁ,:) ;[)rfo ![Drllz tBhZe) Eilsmgl(i) trh(ﬁ)ylg: tfe1re oggfntor
free-electron mass. w0 P ghtly 1arger. %0

2s1 parison to experimental or other theoretical results isigm
2 Refs. 44, 45, and 57.

well as optical band gaps for ordlna(y‘:absi) and extraordlnary

3

rs-MgO rs-CdO .., From Tablell it becomes clear that the electron masses for
m (Tec) 0.36 019, the different oxides decrease by almost a factor of two go-
”‘E(rgc) 0.42 025 . ing along the row MgO, ZnO, S 1n,03, and CdO. Con-
m(Teo) 0.36 019 trary, the values of the electron masses for SnO and 8i©®
Mk (Tgy) 185 4.85 4 larger than for the other oxides. Again, we want to emphasize
Mk (Tgy) 4.53 —-135 ; that the parabolic approximation is only fulfilled in the s
m (Tg,) 321 —198 ., vicinity around thel™ point. From our calculations of the ef-
mx (Cgy) 161 233, fective electron masses we conclude that the electron mobil
mﬁ(rgv) 165 352 . ties should be large irs-CdO,rh-In,03, and rutile- (t) SnG
mf(rfjv) 2.37 —363 ., with the ones of the other oxides being up to a factor of 2.7
My (Fey) 0.44 036, smaller.
M (Cey) 0.44 0.38 2« In addition, we used the electronic structures derived
m (Tg,) 0.36 0.24 '

25 from the HSE6GW, approach also for the derivation of
_ _ ) 26 the charge-neutrality levels and, hence, the band align-
TABLE llI. Effective massesn* (in units of the free-electron mass. ent for different materialé:59.92.93 Furthermore, the

m) at the BZ center along tHe— X, ' —K, andl" —L directions forrs- W )
MgO andrs-CdO. Values are given for the lowest conduction bafr%B(jHSE+GO approach hg‘f 937uccessfully been applied to de
and the uppermost valence bands. 20 SCribe nitride system®” anti-ferromagnetic transition-

10 metal oxides}1-80 biaxially and uniaxially strained Zn¢,%°

so and the non-equilibriumwz polymorphs of MgO and
04567

range for samples of both materials. In addition, in the cfs&’ Cd
[t-SnO the smalleddirect gap of only 2.68 eV occurs at the
M point of the BZ.

The HSE+5oWp results are used to derive the effective elé€- IV. OPTICAL ABSORPTION
tron masses along different directions in the BZ via parabol
fitting to the QP band structures in the close vicinity of tke The optical absorption coefficients calculated from the so-
I point (the M point in the case of SnO). We refer the lution of the BSE fors-MgO, wzZnO, rs-CdO,rt-Sn(Q,, and
reader to the literature for the effective masses that havk-SnO are depicted in Fi®. We found that the inclusion
been derived for thes polymorphs of MgO and Cd®, rt- - of excitonic effects in the description is critically impant
SnG,*4 rh-1n,03,%7 or the wurtzite (v2) polymorphs of MgO, = for the TCOs as they (i) dominate the spectral features aroun
ZnO, and CdTd*>87 For beta-cristobalite3) SiO,, effective xs the absorption onség*>66:6%nd (ii) strongly influence the
electron masses afy (Mcpm)=0.57, mi (Mcem)=0.58, andsw overall spectral shag8:°
my (Fcem)=0.57 are obtained and in the caseltebnO, thesn  As a consequence, a pronounced excitonic peak is visible
conduction-band minimum at thd point of the BZ leads tos::. around the absorption onset, in particularr®MgO andrt -
electron masses aofi;(Mcgm)=0.37 andmy (Mcgm)=0.49 (all 215 SN, [see Fig.2(a) and (d)]. Such a peak also occurs at the
in units of the free-electron mass). We also use these valuemset of the absorption favzZnO even though this is not as
to derive the harmonic mean values of the electron massessfobvious from Fig2(b) due to the scale of this plot. Contrary,
all the oxides (cf. Tabld). a6 the influence of such an excitonic bound state is signifigantl

In the case ofs-MgO*® we find a small anisotropy (indicat=: smaller forrs-CdO andlt-SnO [cf. Fig.2(c) and (e)]. One
ing that the bands are not strictly parabolic within khenge s reason is that these two materials have indirect fundarhenta
used for the fit) and the two twofold degenerate valence bandsand gaps and, in addition, the electronic dielectric sirep
are heavy-hole related (cf. Talke). Their masses are of theo is significantly stronger for these two semiconductors Whic
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FOTTTTITI T TR TR TR ETTTY 5 rs-MgO andwzZnO the optical gaps are significantly smaller
10k (2)rs-MgO 4 o thanthe QP gapsalso given in TallegFor these two materials
5E ] o this difference arises mostly due to the binding energi¢sef
N T T '~ |1 s lowest bound excitonic stat®s**#that reduces the optical
'€ OJ.,...,...,...,...,...,...,...,1 sz gaps with respect to the QP gaps. In addition, the Lorentzian
mo lOE_(b) wzZnO 31 s broadening of 0.1 eV, which is used to account for tempera-
S E i = ture, instrumental, and lifetime effects, further leadste-
—~ S5F 3 s duction of the optical band gap in our calculations. Both the
3 [o] ;o e 1 6 broadening effect as well as the exciton binding energy also
8 FOTTTTITTITT T T TR TR TTTY 55 play arole font-SnGy. However, as elucidated in Ref. 44, the
2 10F (©)rs-CdO 4 s optical transitions between the uppermost valence-badd an
£ s5E 4 s the lowest conduction-band states are dipole forbiddehisn t
o] 1 L T T T 1 0 Material; consequently, the optical gap is found to be much
© OJ.,...,...|...|...,...,...,...|1 ser larger than the QP band gap (cf. Tablg
5 10E (@ rt-SnQ, A4 2 Inthe case ofs-CdO andlt-SnO the optical gap is found
o ] s to be in between the lowest indirect and the lowest direct QP
§) 55‘ 3 s« gap. For these two materials the dielectric screening ishmuc
o bl bl 1 35 larger which is the reason why there occurs no pronounced
< SN 1 % peak due to a bound excitonic state at the absorption onset.
10F (€)lt-SnO 4 s Nevertheless, excitonic effects are responsible for thiealp
5E 3 s gap being smaller than the lowest indirect gap for CdO, in
E L 1. 1...1...1] o additionto the broadening (see above). In the case$hO,
0 g s the LDA+U+A description of the uppermost valence band at

10 20 30 40 50 60 7.0 ) _
Photon energy (eV) s theM point of the BZ differs by 0.73 eV from the HSEBpWo

a2 result. This explains why the optical band gap found in our
FIG. 2. (Color online) Absorption coefficient (in 1@m-1) around calculati_ons turns out to _be underestimated by this amount;
the fundamental band gap for different oxide semicondsaasrcal- + als0 an influence on the line shape of the spectrum cannot be
culated from the solution of the Bethe-Salpeter equatidactB(red) = e€xcluded and will be further investigated in the future.
curves represent ordinary (extraordinary) light polaica s The results for the dielectric functions obtained from the
solution of the BSE have also been used to compute reflec-
ars tivities as well as the electron-energy loss functions fgQ
is why the excitonic effects are reduced. s ZN0O, and Cdd34° For these materials we identified valence

The influence of the electron-hole interaction on the overaj@nd conduction-band levels (as well as their atomic origin)
line shape is referred to as redistribution of oscillateersgth *: that are involved in the transitions that cause the main peak
in the literature. For all the oxides, peaks at higher phoa[ee,pf t_he spectra. The lowest eigenstates of the excitonic Hami
energies are red-shifted due to the excitonic effects by tonian have been calculated for M§Cas well as (strained
1...2 eV4345|n addition, a strong enhancement of the peakand unstrained) Zn®? In the case of AIN and CaO the

intensities and plateau heights due to the Coulomb interaces BSE approach helped to identify the importance of van Hove
occurs at low photon energies. % Singularities and of the excitonic effects for the absanpti

Comparing the dielectric functions calculated from the gp.Spectre®
lution of the BSE to experimental results has shown a very
good agreement, for instance, for MgO, ZnO, and Cé¢,
but also for Sn@.** Peak positions and relative peak heighs V. SUMMARY
are very well described by the calculations for these materi
als. We want to point out that the scissors opera&tothat .,  In this paper the quasiparticle band structures of MgO,
is used to mimic the QP gaps, does not reproduce the engrgnO, CdO, Sn@, SnO, Ip03, and SiQ, calculated using the
dependence of the self-energy operatorHence, we find a; HSE+GoW, approach, have been presented. For these differ-
general trend of a slight underestimation of the energy-p@sient oxides we conclude that our results agree well with exper
tions of the higher-lying CB$? In addition, the absolute valug; imental findings, regarding, for instance, fundamentaldban
of the absorption coefficient turns out to be underestimated, gaps and band dispersions or effective electron massed: In a
the calculations (e.g. for Zm®), which can be explained, fog dition, we presented the optical absorption spectra of MgO,
instance, by imperfect samples, whereas our calculatiens,gl ZznO, CdO, Sn®, and SnO. We showed that for these ox-
scribe defect-free crystals. se7 ides the impact of excitonic effects is significant and has to
By linearly extrapolating the slope of the absorption cerve be taken into account in the calculations. We find that this
(cf. Fig. 2) around the half maximum of the onset to zero ab-task can be successfully accomplished by solving the Bethe-
sorption, we obtained the optical gaps of the oxides cordpile Salpeter equation. For SnO we conclude that the LDAA
in Tablell. We want to point out the strong (noticeable) opir approach does not reproduce the H&GW, results well
cal anisotropy oft-SnO andt-SnG, (wzZnO). In the case ofw. enough, hence, a reliable parameter-free descriptioreafph
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